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Abstract

With the integration of implantable cardiac monitors
such as Medtronic’s LINQ II™ in clinical practice, con-
tinuous monitoring has improved arrhythmias detection.
However, current devices only detect atrial fibrillation
(AF) episodes lasting > 2 minutes, potentially missing
short but clinically relevant arrhythmias such as brief AF
and non-sustained ventricular tachycardia (NSVT), partic-
ularly in hypertrophic cardiomyopathy patients. A Ran-
dom Forest classifier was trained on rhythm-labeled ECG
PhysioNet data from Long Term AF and V1aC databases,
and tested on MIT-BIH Arrhythmia Database. Differ-
ent ECG segment durations (2-min, 1-min, 30-s, and 10-
s) were evaluated to assess detection performance. Ex-
tracted features included RR variability, QRS morphology,
wavelet, high-order statistics, and Hermite coefficients.
Feature selection combined correlation filtering and Least
Absolute Shrinkage and Selection Operator regularization.
With 2-min segments, AF detection achieved F1-score of
0.70 and specificity of 0.95, while NSVT detection was
lower (F1 = 0.44, specificity = 0.70). Shorter segments
improved NSVT detection (specificity = 0.82 at 10-s), but
reduced AF specificity (0.87). Overall, shorter windows
enhance NSVT detection, while AF benefits from longer
ones. The selected features are computationally efficient
and suitable for LINQ II™.

1. Introduction

According to the European Society of Cardiology guide-
lines, AF is defined as an irregular rhythm without dis-
tinct P waves, lasting at least 30 seconds. Individuals with
AF are at risk of stroke, heart failure and increased mor-
tality [1]. Implantable Cardiac Monitors (ICMs), such as
the Medtronic LINQ II™, are widely used for continuous
ECG monitoring in outpatient settings. LINQ II™ con-
tinuously analyzes heart rthythm based on RR-interval ir-
regularity and detects AF episodes using a classification
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algorithm that operates over fixed 2-minute windows [2].
This duration balance sensitivity, specificity, and compu-
tational efficiency. Since the device is designed to operate
for more than four years, the algorithm must be accurate
enough to detect true AF episodes while sufficiently selec-
tive to avoid excessive false positives. In ICMs, each de-
tected episode triggers its storage and remote transmission,
which consumes limited on-device memory and electrical
power for local processing and wireless telemetry. As a
result, only arrhythmic events lasting at least 2 minutes are
currently stored [3]. However, this limitation may lead to
the omission of shorter but clinically relevant AF episodes
that could support earlier diagnosis. In addition, current
ICM algorithms are not optimized to detect other short ar-
rhythmias, such as NSVT, or to precisely capture their on-
set and offset.

NSVT is defined as a sequence of more than three
(typically five) consecutive ventricular beats at rates ex-
ceeding 100 beats per minute, lasting less than 30 sec-
onds [4]. NSVT is a well-established marker of increased
risk for sustained ventricular arrhythmias and sudden car-
diac death, especially in hypertrophic cardiomyopathy pa-
tients, where it plays a key role in decisions regarding
implantable cardioverter-defibrillator (ICD) therapy. Al-
though the 2020 AHA/ACC guidelines recommend 48-
hour Holter monitoring for symptom evaluation, they also
advise periodic ambulatory ECG monitoring every 1 to
2 years for routine surveillance. Notably, several studies
have shown that more frequent and prolonged monitoring
significantly improves the detection rates of both AF and
NSVT [5-7]. Detecting NSVT is particularly challenging
due to its brief duration and its similarity to other arrhyth-
mias such as AF or supraventricular tachycardia, which
may exhibit wide QRS complexes and elevated ventricular
rates. [8,9]. To the best of our knowledge, this is the first
study to propose a unified machine learning (ML) pipeline
for the detection of both short AF episodes and transient
NSVTs. The aim of this study is to develop a lightweight
ML model suitable for integration into ICMs, enabling en-
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hanced diagnostic capabilities without compromising per-
formance and memory.

2. Methods

2.1. Databases

To develop the ML model, three publicly available ECG
datasets from PhysioNet were selected for their rhythm-
level annotations. The Long Term AF Dataset (LTAF) in-
cludes recordings from 24 patients with paroxysmal AF
and 20 with sustained AF, with a balanced gender dis-
tribution. Normal sinus rhythm (N) segments were also
extracted from the same patients during periods without
AF. [10,11]. The VIaC: A Benchmark Dataset of Ventric-
ular Tachycardia Alarms (VTaC) contains intensive care
unit recordings from 2,260 patients and a total of 5,037
alarms. Among these, 1,441 episodes, originating from
777 unique patients, were manually validated by clinicians
as true NSVT and included in this study. [8,11]. The MIT-
BIH Arrhtyhmia Database (MIT-BIH AD) includes 48 an-
notated Holter recordings from 47 subjects, aged 23 to 89
years [11, 12]. For this study, only segments labeled as
N, AF, and NSVT were considered (Table 1), in line with
HCM guidelines, which identify these two arrhythmias as
the most clinically relevant for risk stratification and ICD
therapy. To ensure generalizability of the model and pre-
vent patient overlap, LTAF and VTaC were used for train-
ing, while MIT-BIH AD for testing.

Table 1. Overview of selected PhysioNet ECG databases.

Datab Number of Samyp Recording Rhythm
Patients Rate [Hz] Duration  Considered

LTAF 44 128 25h N, AF

VTaC 777 250 6 min NSVT

MIT-BIH AD 47 360 30 min N, AF, NSVT

2.2. ECG Preprocessing

From each database, four derived datasets were gener-
ated by segmenting the original ECG recordings into fixed-
length windows of 2 minutes, 1 minute, 30 seconds, and
10 seconds. The 2-minute window corresponds to the clin-
ical threshold used by the LINQ II™ device, while shorter
windows were explored to identify the minimum window
length that maintains diagnostic performance while reduc-
ing computational demands. In LTAF and MIT-BIH AD,
segmentation was aligned with rhythm annotations, retain-
ing only windows that contained either AF or a combina-
tion of sinus rhythm and NSVT. In VTaC, where NSVT
onset is standardized at minute 5, windows were centered
around this point.

A unified preprocessing pipeline was applied to all
recordings, following the methodology described in [8].

Briefly, the filtering stage included a high-pass filter at 1
Hz to remove baseline wander, a second-order low-pass
Butterworth filter at 30 Hz to attenuate high-frequency
noise, and a Notch filter at 60 Hz to eliminate powerline
interference. After filtering, all signals were downsam-
pled to 128 Hz, matching both the lowest native sampling
rate among the selected databases and the acquisition fre-
quency of LINQ II™.

2.3. Feature Extraction

A total of 211 hand-crafted features were extracted and
grouped into three categories: heart rate (HR)-related,
QRS complex-related, and signal morphology features. R-
peak detection was performed using Pan-Tompkins algo-
rithm, while fiducial points (P, Q, R, S) were identified us-
ing the method described in [13, 14]. In AF recordings,
where the P-wave is absent, the algorithm accounted for
baseline oscillations characteristic of fibrillatory activity.
All features were then aggregated using statistical descrip-
tors, yielding a single value per feature per segment.

o HR-related features: For each heartbeat, the RR
interval (RR;) was computed together with its
normalized value (RR;/RR,.,). Additional fea-
tures included the ratio between successive intervals
(RR;+1/RR;), the coefficient of variation, the root
mean square of successive differences (RMSSD), the
percentage of successive RR intervals differing by
more than 20 ms (pNN20), and Poincaré descriptors.

¢ QRS complex-related features: Temporal and
amplitude-based features were extracted for each
QRS complex. These included the total QRS
width (QRS,,), widths at 50% (QRS,2) and 25%
(QRS,y4) of the R-peak amplitude, and intervals be-
tween fiducial points, such as the Q-S and P-QRS on-
set intervals. Amplitude descriptors included absolute
(Ppeaks @peaks Rpeak, Spear) and differential values
at each fiducial point (PQ,, QR,, RS,).

« Signal morphology features: Hermite Basis Func-
tion descriptors were computed from 500 ms win-
dows centered on each R-peak using orthogonal Her-
mite polynomials of degrees 3, 4, and 5. High-Order
Statistical features, including skewness and kurtosis,
were extracted at five equally spaced lags within the
same window. Finally, time—frequency features were
derived from a three-level Discrete Wavelet Trans-
form using Daubechies wavelets (dbl), applied to
each segment to extract time—frequency descriptors.

24. ML Model Development

To reduce redundancy and improve model generaliz-
ability, a three-step feature selection strategy was imple-
mented in a 5-fold cross validation setting. Within each
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fold, highly correlated features (Pearson correlation > 0.9)
were removed. Next, Least Absolute Shrinkage and Se-
lection Operator (LASSO) regression was used to enforce
sparsity and eliminate less informative features. Finally,
only the features common to all five folds were consid-
ered to train the final model, and mutual information scores
were computed to rank them by relevance. Multiple ML
classifiers were evaluated: k-Nearest neighbors, random
forest (RF), support vector machine, AdaBoost, NuSVC,
and logistic regression. To address class imbalance in the
training set, the majority class was downsampled, result-
ing in 1,441 ECG segments per rhythm class. For testing,
the imbalanced dataset was used to better reflect real-world
rhythm distributions. To ensure comparability across ECG
window lengths, the number of test segments was limited
to match the smallest available count, which occurred in
the 2-minute dataset (411 N, 59 AF, and 62 NSVT).

The F1-score was used as the primary evaluation metric
due to class imbalance, with AF and NSVT being less fre-
quent than N. Sensitivity and specificity were also consid-
ered, as ICMs must detect true arrhythmias reliably, while
minimizing false positives (FP) to preserve memory and
battery life.

3. Results

3.1. Model Optimization

The RF classifier achieved the highest F1-score among
all models evaluated and was therefore selected for fur-
ther optimization. To fine-tune its performance, different
configurations were tested using grid-search settings and
by varying the size of the input feature vector. The opti-
mal number of features varied with segment length: 18 for
2-minute and 1-minute windows, and 14 for both 30- and
10-second segments. For consistency in comparison across
window durations, the final model configuration used the
top 14 features ranked by Mutual Information. Among
these, features related to RR intervals, QRS morphology,
and skewness consistently ranked highest in relevance and
also exhibited the lowest computational cost.

3.2. RF Performance Across ECG Window
Durations

The performance of the RF classifier varied across seg-
ment lengths. With 2-minute windows, NSVT detection
achieved high sensitivity (0.92) but a low F1-score of 0.44,
indicating a high rate of false positives. This was likely
due to the short duration of NSVT events, which were
embedded within longer windows dominated by normal
sinus thythm. As features were aggregated over the en-
tire segment, NSVT-specific patterns were diluted, leading
to frequent misclassifications. In contrast, AF detection

achieved robust results, with an F1-score of 0.70 and speci-
ficity of 0.95. Reducing the window to 1 minute preserved
strong AF performance (sensitivity = 0.68, specificity =
0.94), while NSVT sensitivity remained high (0.84), al-
though specificity was still limited (0.75), again indicat-
ing many false positives. With 30-second segments, the
model maintained good AF classification (sensitivity =
0.63, specificity = 0.96), and NSVT detection improved
significantly, achieving sensitivity of 0.74 and specificity
of 0.98.

At 10-second windows, the classifier achieved its best
NSVT detection performance, with sensitivity of 0.95 and
specificity of 0.82. AF detection remained acceptable,
though sensitivity (0.64) and specificity (0.87) showed
a modest decline (Figure 1). These trends are further
supported by Table 2, which shows a reduction in FP
for NSVT, along with relatively stable true positive (TP)
counts and a slight increase in FP for AF as the window
length decreases. Regarding class-weighted performance
across AF and NSVT, specificity remained consistently
high across all window lengths, whereas both sensitivity
and F1-score improved as the segment length decreased
(Figure 2).

Table 2. TP, FP, true negative (TN) and false negative (FN)
for AF and NSVT across different ECG durations.

2min 1min 30sec 10sec

TP 44 40 31 38
AF FP 23 30 16 54

TN 450 443 457 419

FN 15 19 28 21

TP 57 52 61 59

FP 140 117 124 85
NSVT TN 330 353 346 385

FN 5 10 1 3
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Figure 1. AF and NSVT specificity across ECG durations.

4. Discussion

This study evaluated a RF classifier for the joint detec-
tion of NSVT and brief AF episodes.
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Figure 2. Class-weighted performance across ECGs.

Results show a clear window-length effect: shorter seg-
ments improved NSVT detection by isolating events, while
longer ones better captured AF through RR variability.
This supports the 2-minute window used in LINQ [I™
designed to balance performance and resource use. Most
prior work focused on AF or VT separately. Zabihi et al.,
trained an RF with 150 hand-crafted features on 30-second
recordings, achieving an AF F1-score of 0.83 [15]. Liagat
et al., compared ML models on MIT-BIH AF Database,
reporting AF Fl-scores of 0.86 [16]. These works, how-
ever did not address VT. For NSVT, Sau et al., proposed a
RF model to distinguish NSVT from VT, with sensitivity
of 0.79 and specificity of 0.75, comparable to our results
[17]. In our study, feature selection highlighted beat-to-
beat RR variability as the main determinant for AF detec-
tion in longer segments, whereas QRS morphology and
short-run RR descriptors were the most informative for
NSVT in shorter windows. Notably, no frequency-domain
features were selected at any window length, supporting an
ICM-friendly design based on computationally efficient,
time-domain metrics.

5. Conclusion

This study presented a simple RF model capable of de-
tecting both AF and NSVT, with performance varying by
window length. Shorter segments improved NSVT detec-
tion, while longer windows favored AF. Future work will
focus on testing and fine-tuning the model on real-world
ICM data to support clinical integration.
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